Role of the N-terminal domain of FliI ATPase in bacterial flagellar protein export.

نویسندگان

  • Mayuko Okabe
  • Tohru Minamino
  • Katsumi Imada
  • Keiichi Namba
  • May Kihara
چکیده

FliI, the ATPase involved in bacterial flagellar protein export, forms a complex with its regulator FliH in the cytoplasm and hexamerizes upon docking to the export gate composed of integral membrane proteins. The extreme N-terminal region of FliI is involved not only in its interaction with FliH but also in its oligomerization, but the regulatory mechanism of oligomerization remains unclear. Using in-frame 10-residue deletions within the 100 residues of the N-terminal domain, we demonstrate that the first 20 residues are required for FliH binding and that the conformation of the N-terminal domain is sensitive to the export function, even though the oligomerization and FliH-binding ability are retained and the ATPase activity is maintained in most of the deletion variants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export.

The flagellar type III protein export apparatus plays an essential role in the formation of the bacterial flagellum. FliH forms a complex along with FliI ATPase and is postulated to provide a link between FliI ring formation and flagellar protein export. Two tryptophan residues of FliH, Trp7 and Trp10, are required for the effective docking of the FliH-FliI complex to the export gate made of si...

متن کامل

Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagellar type III protein export.

For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic do...

متن کامل

The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis

For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the...

متن کامل

Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly.

FliI is the peripheral membrane ATPase pivotal to the type III protein export mechanism underlying the assembly of the bacterial flagellum. Gel filtration and multiangle light scattering showed that purified soluble native FliI protein was in a monomeric state but, in the presence of ATP, FliI showed a propensity to oligomerize. Electron microscopy revealed that FliI assembles to a ring structu...

متن کامل

Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus

For construction of the bacterial flagellum, FliI ATPase forms the FliH2-FliI complex in the cytoplasm and localizes to the flagellar basal body (FBB) through the interaction of FliH with a C ring protein, FliN. FliI also assembles into a homo-hexamer to promote initial entry of export substrates into the export gate. The interaction of FliH with an export gate protein, FlhA, is required for st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 583 4  شماره 

صفحات  -

تاریخ انتشار 2009